明尼蘇達(dá)大學(xué)雙城分校工業(yè)和應(yīng)用數(shù)學(xué)

指南者留學(xué) 2022-04-19 23:43:36

UMN的全稱是University of Minnesota-Twin Cities的Industrial and Applied Mathematics,即明尼蘇達(dá)大學(xué)雙城分校工業(yè)和應(yīng)用數(shù)學(xué),下面將詳細(xì)介紹UMN的的項(xiàng)目特點(diǎn)/院系介紹、UMN的的研究生申請要求。

UMN的「明尼蘇達(dá)大學(xué)雙城分校工業(yè)和應(yīng)用數(shù)學(xué)」

明尼蘇達(dá)大學(xué)雙城分校

UMN的培養(yǎng)計劃

The School of Mathematics offers a M.S. (Plan A) degree with emphasis in Industrial and Applied Mathematics. The general requirements include 14 credit in Mathematics at the 8-xxx or 5-xxx level (with at least one year-long sequence at the 8-xxx level), 6 credit of related courses outside the department at the 5-xxx or 8-xxx level, and 10 thesis credits. Each student will spend one semester (most likely summer) working in an industrial laboratory. Applications and information can be obtained from the Director of Graduate Studies, Vincent Hall 127, by email: gradprog@math.umn.edu. Specific questions about the program should be addressed to Professor Fadil Santosa at email: mcim@math.umn.edu or by viewing the website: http://www.math.umn.edu/mcim.

UMN的研究領(lǐng)域(英文版)

1、Mathematical Logic I

2、Mathematical Logic II

3、Cryptology and Number Theory

4、Error-Correcting Codes, Finite Fields, Algebraic Curves

5、Geometry

6、Differential Geometry

7、Mathematical Analysis of Biological Networks

8、Topics in Applied Mathematics

9、Dynamical Systems and Chaos

10、Complex Analysis

11、Prediction and Filtering

12、Enumerative Combinatorics

UMN的研究領(lǐng)域(中文版)

1、數(shù)理邏輯1

2、數(shù)理邏輯2

3、密碼學(xué)與數(shù)論

4、糾錯碼,有限域,代數(shù)曲線

5、幾何

6、微分幾何

7、生物網(wǎng)絡(luò)的數(shù)學(xué)分析

8、應(yīng)用數(shù)學(xué)專題

9、動力系統(tǒng)與混沌

10、復(fù)數(shù)分析

11、預(yù)測和濾波

12、枚舉組合數(shù)學(xué)

UMN的申請要求

托福79分,寫作要求21分,閱讀要求19分,GRE,GRE要求數(shù)學(xué)科目考試成績,GPA要求3.0,學(xué)費(fèi):6-14個學(xué)分學(xué)費(fèi)為$11,495.00,14個學(xué)分以上學(xué)費(fèi)為$1,915.84/學(xué)分,申請截止日期:PhD12月15日,MS2月1日

xrroyv.cn/majr_39624
明尼蘇達(dá)大學(xué)雙城分校 工業(yè)和應(yīng)用數(shù)學(xué) 
大陸本科 海外本科
  • {{item.college_name}}
搜索的學(xué)校不存在
搜索中...
{{item}}
{{ item.name }}